Question 87371
{{{sqrt(175*x^4)}}}

{{{sqrt(25*7*x^4)}}} Factor {{{175}}} into {{{25*7}}}
 
{{{sqrt(25*7*x^2*x^2)}}} Factor {{{x^4}}} into {{{x^2*x^2}}}
 
{{{sqrt(25)*sqrt(7)*sqrt(x^2)*sqrt(x^2)}}} Break up the square roots using the identity {{{sqrt(x*y)=sqrt(x)*sqrt(y)}}}
 
{{{5*sqrt(7)*sqrt(x^2)*sqrt(x^2)}}} Take the square root of the perfect square {{{25}}} to get 5 
 
{{{5*sqrt(7)*x*x}}} Take the square root of the perfect squares and {{{x^2}}} to get and {{{x}}} 
 
{{{5*sqrt(7)*x^2}}} Multiply the common terms 

{{{5*x^2*sqrt(7)}}} Rearrange the terms 

{{{5*x^2*sqrt(7)}}} Group the square root terms