Question 1016416
.
Find  f ’(x)   if 

     f(x) = 5 tan(x)   - 2 e^x  - 3

and evaluate f ’(1). (Keep 2 decimal places) 
-----------------------------------------------------


<pre>
f(x) = {{{5*tan(x) - 2e^x - 3}}}

You probably know that (tan(x))' = {{{1/cos^2(x)}}} 

                       ({{{e^x}}})' = {{{e^x}}}.

Therefore,

f'(x) = {{{5/cos^2(x)}}} - {{{2e^x}}}.


Hence, f'(1) = {{{5/cos^2(1)}}} - {{{2e^1}}} = {{{5/cos^2(1)}}} - {{{2e}}}.

Please calculate it yourself.
</pre>

You need to know the table for basic derivatives.

See, for example, <A HREF=http://www.math.ubc.ca/~feldman/m200/formulae.pdf>http://www.math.ubc.ca/~feldman/m200/formulae.pdf</A>.