Question 1015011
I will denote the complement by A', not Ac.
a.  P(A) = 0.03, while P(A') = 0.97

b.  P(B|A) = P(AB)/P(A)) = {{{(0.03*0.90)/.03}}} = 0.90
 P(B|A') = P(A'B)/P(A') = {{{(0.97*0.12)/.97}}} = 0.12


c. We are looking for P(A'|B).

P(A'|B) = P(A'B)/P(B) = P(A'B)/(P(A'B)+P(AB)) = {{{0.1164/(0.1164 + 0.027)}}} = 194/239.