Question 1014702
<font face="Times New Roman" size="+2">


Use the midpoint formulas with the coordinates of points A and C to find the coordinates of the midpoint of AC:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x_m\ = \frac{x_1 + x_2}{2}] and


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y_m\ = \frac{y_1 + y_2}{2}]


Then use the two-point form  of a line to find an equation for the line through B and the midpoint of AC


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ -\ y_1\ =\ \left(\frac{y_1\ -\ y_2}{x_1\ -\ x_2}\right)(x\ -\ x_1) ]


where *[tex \Large \left(x_1,y_1\right)] and *[tex \Large \left(x_2,y_2\right)] are the coordinates of the given points.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it

*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>