Question 1011748
<pre>   
Below are all 36 possible rolls.  The red ones are the
only ones with a 5 on either die or the sum of both dice is 5 

(1,1) (1,2) (1,3) <font color="red"><b>(1,4) (1,5)</font></b> (1,6)

(2,1) (2,2) <font color="red"><b>(2,3)</b></font> (2,4) <font color="red"><b>(2,5)</b></font> (2,6)
 
(3,1) <font color="red"><b>(3,2)</b></font> (3,3) (3,4) <font color="red"><b>(3,5)</b></font> (3,6) 

<font color="red"><b>(4,1)</b></font> (4,2) (4,3) (4,4) <font color="red"><b>(4,5)</b></font> (4,6)
 
<font color="red"><b>(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)</font></b>
 
(6,1) (6,2) (6,3) (6,4) <font color="red"><b>(6,5)</b></font> (6,6)  

Count the red ones.  There are 15.  The probability is 15 out of 36,
or 15/36 which reduces to 5/12.

Edwin</pre>