Question 1010765
Let's draw out the picture. Let's assume PARL is a rectangle. This drawing (below) does NOT prove it is a rectangle. The table after the drawing is what will prove the claim. The drawing is simply a tool to help visualize the proof.


<img src = "http://i.imgur.com/Tc2GDVH.jpg">



Proof Table


<table border=1><tr><th>Number</th><th>Statement</th><th>Reason</th></tr><tr><td>1</td><td>PARL is a parallelogram</td><td>Given</td></tr><tr><td>2</td><td>The diagonals of PARL are congruent</td><td>Given</td></tr><tr><td>3</td><td>PR = AL</td><td>Diagonals are congruent</td></tr><tr><td>4</td><td>PA = RL</td><td>Opposite sides of a parallelogram are congruent</td></tr><tr><td>5</td><td>AR = LP</td><td>Opposite sides of a parallelogram are congruent</td></tr><tr><td>6</td><td>Triangle APL = Triangle RLP</td><td>SSS Property of Congruence</td></tr><tr><td>7</td><td>Angle APL = Angle RLP</td><td>CPCTC</td></tr><tr><td>8</td><td>Triangle PAR = Triangle LRA</td><td>SSS Property of Congruence</td></tr><tr><td>9</td><td>Angle PAR = Angle LRA</td><td>CPCTC</td></tr><tr><td>10</td><td>(Angle APL)+(Angle RLP) = 180</td><td>Same Side Interior angles are supplementary</td></tr><tr><td>11</td><td>(Angle APL)+(Angle APL) = 180</td><td>Substitution (lines 10 and 7)</td></tr><tr><td>12</td><td>2*(Angle APL) = 180</td><td>Combine like terms</td></tr><tr><td>13</td><td>Angle APL = 90 degrees</td><td>Division Property of Equality</td></tr><tr><td>14</td><td>90 degrees = Angle RLP</td><td>Substitution (lines 7 and 13)</td></tr><tr><td>15</td><td>Angle RLP = 90 degrees</td><td>Symmetric Property of Equality</td></tr><tr><td>16</td><td>Angle ARL = Angle APL</td><td>Opposite angles of a parallelogram are congruent</td></tr><tr><td>17</td><td>Angle ARL = 90 degrees</td><td>Substitution (lines 16 and 13)</td></tr><tr><td>18</td><td>Angle PAR = Angle RLP</td><td>Opposite angles of a parallelogram are congruent</td></tr><tr><td>19</td><td>Angle PAR  = 90 degrees</td><td>Substitution (lines 18 and 15)</td></tr><tr><td>20</td><td>PARL has 4 right angles</td><td>See lines 13,15,17,19</td></tr><tr><td>21</td><td>PARL is a rectangle</td><td>Definition of Rectangle (see note)</td></tr></table>


Note: A rectangle is simply a quadrilateral with 4 right angles (aka 90 degree angles).