Question 1009750
{{{x<4y+2}}}
{{{y> x/4-1/2}}}.......eq.1
{{{x+y<0}}}...........eq.2
---------------
find intersection point, do it as you have equal sign

{{{x+y=0}}}=>{{{y=-x}}}...substitute in

{{{x=4y+2}}}=>{{{x=4(-x)+2}}}=>{{{x=-4x+2}}}=>{{{x+4y=2}}}=>{{{5x=2}}}=>{{{x=2/5}}}

then {{{y=-x}}}=>{{{y=-2/5}}}

so, intersection point is at: ({{{2/5}}},{{{-2/5}}})

{{{drawing( 600, 600, -10, 10, -10, 10,
circle(2/5,-2/5,.12),locate(2/5,-2/5,p(2/5,-2/5)),
locate(-10,2,shade_this_area_between),
locate(-10,1,green_and_red_line),
locate(-10,-1,up_to_intersection_point),
 graph( 600, 600, -10, 10, -10, 10, x/4-1/2, -x )) }}}