Question 1008339
The way you used spacing between characters, you might be trying to show  {{{1/(x+3)+1/x>=0}}}


{{{(1/(x+3))(x/x)+(1/x)((x+3)/(x+3))>=0}}}


{{{(x+x+3)/(x(x+3))>=0}}}


{{{highlight_green((2x+3)/(x(x+3))>=0)}}}
Critical values are  0, -3, and -3/2.
{{{x<>0}}} and {{{x<>-3}}}.


Check the intervals on x of  {{{-infinity<x<-3}}}, {{{-3<x<=-3/2}}}, {{{-3/2<=x<0}}}, and  {{{0<x<infinity}}}.



CHECK ANY POINT IN EACH INTERVAL.

Pick -5, (-)/((-)(-)), negative, meaning FAIL

Pick -2, (-)/((-)(+)), positive, meaning PASS or TRUE

Pick -1, (+)/((-)(+)), negative, FAIL

Pick 1, (+)/((+)(+)), positive, TRUE/PASS



SOLUTION <b>SET</b> IS  {{{-3<x<=-3/2}}}  AND  {{{0<x<infinity}}} .