Question 1007524
Let {{{ m }}} = number opf men
Let {{{ w }}} = number of women
Let {{{ c }}} = number of children
---------------------------
given:
(1) {{{ m = w + 250 }}}
(2) {{{ c = 2w }}}
(3) {{{ m = 2*( c + w ) }}}
---------------------
There are 3 equations and 3 unknowns,
so it's solvable
---------------------
Substitute (2) into (3)
(3) {{{ m = 2*( 2w + w ) }}}
(3) {{{ m = 2*( 3w ) }}}
(3) {{{ m = 6w }}}
Substitute (3) into (1)
(1) {{{ 6w = w + 250 }}}
(1) {{{ 5w = 250 }}}
(1) {{{ w = 50 }}}
and
(3) {{{ m = 6w }}}
(3) {{{ m = 6*50 }}}
(3) {{{ m = 300 }}}
and
(2) {{{ c = 2w }}}
(2) {{{ c = 2*50 }}}
(2) {{{ c = 100 }}}
There were 100 children, 50 women, and 300 men, so
{{{ 100 + 50 + 300 = 450 }}} people watched the match
--------------------------
check:
(3) {{{ m = 2*( c + w ) }}}
(3) {{{ 300 = 2*( 100 + 50 ) }}}
(3) {{{ 300 = 2*150 }}}
(3) {{{ 300 = 300 }}}
OK -you can check (1) and (2)