Question 1006793
I'm assuming the equation is {{{4^(3+x)=30}}}



{{{4^(3+x)=30}}} Given equation.



{{{Ln(4^(3+x))=Ln(30)}}} Apply natural logs to both sides.



{{{(3+x)*Ln(4)=Ln(30)}}} Use <a href="http://www.purplemath.com/modules/logrules.htm">rule 3</a>



{{{3*Ln(4)+x*Ln(4)=Ln(30)}}} Distribute.



{{{x*Ln(4)=Ln(30)-3*Ln(4)}}} Subtract {{{3*Ln(4)}}} from both sides.



{{{x=(Ln(30)-3*Ln(4))/(Ln(4))}}} Divide both sides by {{{Ln(4)}}}. This is the exact solution.



{{{x=-0.54655470219574}}} Use a calculator to evaluate the expression {{{(Ln(30)-3*Ln(4))/(Ln(4))}}}.



{{{x=-0.55}}} Round to the nearest hundredth.



Final Answer: -0.55