Question 1004979
 Find the two-trisection points of the line segment joining 
A ({{{-3}}},{{{-4}}}) & B ({{{6}}},{{{11}}}) 

Calculate the difference in {{{x}}} values.
{{{x[2]-x[1]=6-(-3)=6+3=9}}}
Trisect the difference or divide it in {{{3}}}.
{{{DELTA*x=9/3=3}}}

Calculate the difference in {{{y}}} values.
{{{y[2]-y[1]=11-(-4)=11+4=15}}}
Divide it in {{{3}}}.
{{{DELTA*y=15/3=5}}}

Starting at ({{{-3}}},{{{-4}}}) add ({{{3}}},{{{5}}})
({{{-3+3}}},{{{-4+5}}})=({{{0}}},{{{1}}})

Starting at ({{{0}}},{{{1}}}), add ({{{3}}},{{{5}}})
=> ({{{3}}},{{{6}}})
Finally one more time should get us to the second given point.
({{{3}}},{{{6}}})+({{{3}}},{{{5}}})=({{{6}}},{{{11}}})
Verifying that the method was proper.
({{{0}}},{{{1}}}) and ({{{3}}},{{{6}}}) are the two points.
.
.
.
{{{drawing(300,300,-15,15,-15,15,grid(1),
blue(line(-3,-4,6,11)),circle(3,6,0.45),
circle(-3,-4,0.45),circle(3,6,0.45),
circle(6,11,0.45),circle(0,1,0.45),
graph(300,300,-15,15,-15,15,0))}}}