Question 1004836
{{{3^(2x+1)+26*(3^x)-9=0}}}
{{{3*3^(2x)+26*(3^x)-9=0}}}
Let {{{u=3^x}}}, then {{{u^2=3^(2x)}}}
So,
{{{3u^2+26u-9=0}}}
{{{(u+9)(3u-1)=0}}}
Two "u" solutions:
{{{u+9=0}}}
{{{u=-9}}}
{{{3^x=-9}}}
No x solution available.
.
.
.
{{{3u-1=0}}}
{{{3u=1}}}
{{{u=1/3}}}
{{{3^x=3^(-1)}}}
{{{highlight_green(x=-1)}}}