Question 1004703
{{{abs(sec(t)) = 1}}}


{{{abs(1/(cos(t))) = 1}}}


{{{1/(cos(t)) = 1}}} or {{{1/(cos(t)) = -1}}}


------------------------------------------------


Let's focus on solving {{{1/(cos(t)) = 1}}}


{{{1/(cos(t)) = 1}}}


{{{1 = 1*cos(t)}}}


{{{1 = cos(t)}}}


{{{cos(t) = 1}}}


{{{t = 0}}} or {{{t = 2pi}}}


------------------------------------------------


Let's focus on solving {{{1/(cos(t)) = -1}}}


{{{1/(cos(t)) = -1}}}


{{{1 = -1*cos(t)}}}


{{{1 = -cos(t)}}}


{{{-cos(t) = 1}}}


{{{cos(t) = -1}}}


{{{t = pi}}}


------------------------------------------------


The three solutions to {{{abs(sec(t)) = 1}}} in the interval [0,2pi] are {{{t = 0}}}, {{{t = pi}}} or {{{t = 2pi}}}