Question 1002747
<font face="Times New Roman" size="+2">


If (1, 7) is a point on the graph of *[tex \Large f(x)\ =\ ax^2\ +\ bx\ +\ c], then *[tex \Large a(1)^2\ +\ b(1)\ +\ c\ =\ 7].


If (2, 2) is a point on the graph of *[tex \Large f(x)\ =\ ax^2\ +\ bx\ +\ c], then *[tex \Large a(2)^2\ +\ b(2)\ +\ c\ =\ 2]


If (4, -32) is a point on the graph of *[tex \Large f(x)\ =\ ax^2\ +\ bx\ +\ c], then *[tex \Large a(4)^2\ +\ b(4)\ +\ c\ =\ -32]


Simplifying:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ a\ +\ b\ +\ c\ =\ 7]
*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 4a\ +\ 2b\ +\ c\ =\ 2]
*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 16a\ +\ 4b\ +\ c\ =\ -32]


Solve the 3X3 system of equations to determine the a, b, and c coefficients of the desired function.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it

*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  
</font>