Question 1002716
hello, if I could have help with a problem. 
I was a bit confused on this one. 
question: find exact values of 6 trig function of angle 1575 degrees

so what I have done so far was I subtracted 1575 - 360 till I got a number in the unit circle. now when I did this I got 165.

Thank you
<pre>{{{1575/360}}} = 4, REMAINDER 135
{{{135^o}}} is in the 2<sup>nd</sup> quadrant, and its REFERENCE angle is {{{45^o}}}
{{{sin (135^o) = sin (45^o)}}} = {{{highlight_green(sqrt(2)/2)}}}
{{{cos (135^o) = cos (- 45^o)}}} = {{{highlight_green(- sqrt(2)/2)}}}
{{{tan (135^o) = (sin (45^o))/(cos (- 45^o))}}} = {{{(sqrt(2)/2)/(- sqrt(2)/2)}}} = {{{sqrt(2)/2}}}{{{"*"}}}{{{- 2/sqrt(2)}}} = {{{cross(sqrt(2))/cross(2)}}}{{{"*"}}}{{{- 1cross(2)/cross(sqrt(2))}}} ={{{highlight_green(- 1)}}}

{{{csc (135^o) = 1/sin (45^o)}}} = {{{2/sqrt(2)}}} = {{{highlight_green(sqrt(2))}}}
{{{sec (135^o) = 1/cos (- 45^o)}}} = {{{- 2/sqrt(2)}}} = {{{highlight_green(- sqrt(2))}}}
{{{cot (135^o) = 1/tan (135^o)}}} = {{{- 1/1)}}} = {{{highlight_green(- 1)}}}