Question 1001667


<table border=1><tr><th>Statement</th><th>Translation</th></tr><tr><td>f(0) = 0</td><td>The point (0,0) is on the graph of f(x)</td></tr><tr><td>f'(1) = 0</td><td>The slope of the tangent line at x = 1 is m = 0. This tangent line is horizontal</td></tr><tr><td>lim x-&gt;&#8734; f(x) = 0</td><td>There is a horizontal asymptote at y = 0</td></tr><tr><td>lim x-&gt;-&#8734; f(x) = 0</td><td>There is a horizontal asymptote at y = 0</td></tr><tr><td>lim x-&gt;-1 f(x) = &#8734;</td><td>There is a vertical asymptote at x = -1</td></tr><tr><td>f'(x)&gt;0 on (-&#8734;,-1)U(1,&#8734;)</td><td>Function f(x) is increasing when x &lt; -1 or when x &gt; 1</td></tr><tr><td>f'(x)&lt;0 on (-1,1)</td><td>Function f(x) is decreasing when -1 &lt; x &lt; 1</td></tr><tr><td>f"(x)&gt;0 on (-&#8734;,-1)U(-1,3)</td><td>Function f(x) is concave up when x &lt; -1 or when -1 &lt; x &lt; 3</td></tr><tr><td>f"(x)&lt;0 on (3,&#8734;)</td><td>Function f(x) is concave down when x &gt; 3</td></tr></table>