Question 1001378

an equation for a function with a graph that has x-intercepts (or zeros) at {{{x[1]=-3}}}, {{{x[2]=4}}} and {{{x[3]=6}}} is:

use zero product formula

{{{f(x)=(x-x[1])(x-x[2])(x-x[3])}}}

{{{f(x)=(x-(-3))(x-4)(x-6)}}}

{{{f(x)=(x+3)(x-4)(x-6)}}}

{{{f(x)=(x^2-4x+3x-12)(x-6)}}}

{{{f(x)=(x^2-x-12)(x-6)}}}

{{{f(x)=x^3-6x^2-x^2+6x-12x+72}}}

{{{f(x)=x^3-7x^2-6x+72}}}


{{{ graph( 600, 600, -10, 10, -10, 100, x^3-7x^2-6x+72) }}}