Question 1000271
{{{6^(3-4x) * 4^(x+4) = 2}}}....use log


{{{log(6^(3-4x) * 4^(x+4)) =log( 2)}}}....write {{{6^(3-4x)}}}as {{{3^(3-4x)*2^(3-4x)}}} and {{{4^(x+4))}}} as {{{2^(2x+8)}}}

{{{log((3^(3-4x)*2^(3-4x) *2^(2x+8))) =log(( 2))}}} 


{{{log((3^(3-4x)*2^(3-4x+2x+8))) =log(( 2))}}} 


{{{log((3^(3-4x)*2^(11-2x))) =log(( 2))}}} 


{{{log((3^(3-4x))+log((2^(11-2x)))) =log(( 2))}}} 


{{{(3-4x)log((3))+(11-2x)log((2))) =log(( 2))}}} 

{{{3log((3))-4xlog((3))+11log((2))-2xlog((2))=log(( 2))}}}

{{{3log((3))-log(( 2))+11log((2))=4xlog((3))+2xlog((2))}}}

{{{3log((3))+10log((2))=2x(log((3))+log((2)))}}}

{{{x=(3log((3))+10log((2)))/2(log((3))+log((2)))}}}