Question 999524
{{{P=Ae^(bt)}}}
.
.
{{{P(0)=A=1000000}}}
.
.
{{{P(2)=1000000e^(2b)=2000000}}}
{{{e^(2b)=2}}}
{{{2b=ln(2)}}}
{{{b=ln(2)/2}}}
.
.
So then,
{{{P(3)=1000000e^((3/2)ln(2))}}}
.
.
.
In the interval ({{{0}}},{{{2}}}), there exists a value {{{c}}} where {{{0<c<2}}} such that the derivative of the function at {{{x=c}}} is equal to,
{{{(df/dx)(c)=(f(2)-f(0))/(2-0)}}}
{{{(df/dx)(c)=(f(2)-f(0))/2}}}