Question 998793
<i>A) How many rabbits are in he forest now? my answer is 214</i>
{{{t=0}}};
{{{p=12300+1000*ln(0+1)}}}
{{{12300+1000*ln(1)}}}
{{{1230+1000*0}}}
{{{12300}}}


<i>B) How many rabbits will be in the forest 1 year from now? my was 332</i>
{{{t=1}}};
{{{p=12300+1000*ln(1+1)}}}
{{{p=12300+1000*ln(2)}}}
{{{p=13000}}}
 

<i>C) How many years will it take for the rabbit population to reach 15,000? I had 4.7years</i>
{{{p=15000=12300+1000*ln(t+1)}}}
{{{15000-12300=1000*ln(t+1)}}}
{{{2700=1000*ln(t+1)}}}
{{{10*ln(t+1)=27}}}
{{{ln(t+1)=2.7}}}
{{{e^(2.7)=t+1}}}
{{{highlight_green(t=-1+e^(2.7))}}}
{{{highlight(t=13.9)}}}



--
Question part D asks for a time for a certain comparison between the fox and the rabbit populations.  For what value t will foxes be 5% of rabbits?


Find t for  {{{400+(50)*ln(90t+1)=(5/100)(12300+1000ln(t+1))}}}.
Do the necessary algebra steps to solve for t.