Question 998784
.
N=smallest integer, N+2=middle integer, N+4=largest integer
.
{{{N^2+(N+2)^2=(N+4)^2+33}}}
.
{{{N^2+(N^2+4N+4)=(N^2+8N+16)+33
.
{{{2N^2+4N+4=N^2+8N+49}}}
.
{{{N^2-4N-45=0}}}
.
{{{(N-9)(N+5)=0}}}
.
{{{N-9=0}}} {{{OR}}} {{{N+5=0}}}
.
{{{N=9}}} {{{OR}}} {{{N=-5}}}
.
ANSWER: 9 is the only positive result.
.
CHECK:
.
{{{9^2+(9+2)^2=(9+4)^2+33}}}
.
{{{81+121=169+33}}}
.
{{{202=202}}}
.