Question 998720
``Please someone help me because I keep trying this question and coming up with the wrong answer after I add it all up. Show all steps. Thanks

If ln a=2 , ln b=3 , and ln c=5 , evaluate the following: 

d. (In c^-4)(In a/b^2)^4''.
(-4In5)(In(2)-In2(3))^4. = -40-(6^4)=-40-1296=1256. 1256 Was the ANSWER I GOT 
<pre>Sorry! That answer's incorrect.

ln a = 2; ln b = 3; and ln c = 5
{{{ln_c^(- 4)}}}{{{"*"}}}{{{(ln_(a/b^2))^4}}} 


{{{ln_c^(- 4)}}} = {{{ln_(1/c^4)}}} --------> {{{ln_1 - ln_c^4}}} ------> ln 1 – 4 * ln c -------> 0 – 4 * ln c -----> - 4 * ln c
{{{(ln_(a/b^2))^4}}} = {{{(ln_a - ln_b^2)^4}}} ------> {{{(ln_a - 2 * ln_b)^4}}}


{{{ln_c^(- 4)}}}{{{"*"}}}{{{(ln_(a/b^2))^4}}} now becomes: 
{{{(- 4 * ln_c) * (ln_a - 2 * ln_b)^4}}}

{{{(- 4 * 5) * (2 - 2 * 3)^4}}} ------- Substituting 2 for ln a; 3 for ln b; and 5 for ln c

{{{- 20 * (2 - 6)^4}}}

{{{- 20 * (- 4)^4}}}

- 20(256), or {{{highlight_green(- 5120)}}}</pre>