Question 997231
Simplify 

A. 

{{{a^(1/4) * a^(2/5) * a^(-1/10) }}}

with the question above my book says the answer is a^(11/20) but i don't understand how this answer has been reached! If you could show the working that would be great! 

B. {{{5sqrt(a^3*b^2) * 5sqrt(a^2*b^(-1))}}}

This one I'm just not sure how to simplify with the square roots so work out would be great once again! 

Thank you so so much! 
<pre><font face = "Century Gothic" size = 4 color = "indigo"><b>A)     a<sup>1/4</sup> + a<sup>2/5</sup> - a<sup>1/10</sup>
         a<sup>(1/4 + 2/5 - 1/10)</sup> -------- Multiplying expressions with same base, so exponents are added
         a<sup>(5/20 + 8/20 - 2/20)</sup> ----- Converting fractions to LCD, 20
{{{highlight(highlight(highlight(highlight(a^(11/20)))))}}}, or a<sup>11/20</sup>

B).     {{{5sqrt(a^3*b^2) * 5sqrt(a^2*b^(-1))}}}
        {{{5 * 5 * sqrt(a^3*b^2) * sqrt(a^2*b^(-1))}}}
        {{{25 * sqrt(a^3*b^2) * sqrt(a^2*b^(-1))}}}
        {{{25 * sqrt(a^3*b^2 * a^2*b^(-1))}}} --------- Combining RADICANDS into one (1) RADICAL
        {{{25 * sqrt(a^(3 + 2)*b^(2 + - 1))}}}
        {{{25 * sqrt(a^5b)}}}
        {{{25 * sqrt(a^4 * a * b)}}}
        {{{25 * sqrt((a^2)^2 * a * b)}}}, and FINALLY: {{{highlight_green(25a^2 * sqrt(ab))}}}