Question 996938
.
{{{cot(theta)}}} + {{{1/cot(theta)}}} = {{{(cos(theta))/sin(theta)}}} + {{{1/((cos(theta))/(sin(theta)))}}} = {{{(cos(theta))/sin(theta)}}} + {{{(sin(theta))/(cos(theta))}}} =     (write it with the common denominator which is {{{sin(theta)*cos(theta)}}}


= {{{(cos^2(theta))/(sin(theta)*cos(theta))}}} + {{{(sin^2(theta))/(sin(theta)*cos(theta))}}} = {{{(sin^2(theta) + cos^2(theta))/(sin(theta)*cos(theta))}}} =     (now recall that {{{sin^2(theta) + cos^2(theta)}}} = {{{1}}}) 


= {{{1/(sin(theta)*cos(theta))}}}.


It is what has to be proved.