Question 996805
f(x)=a(x+3)(x)(x-6)=a(x^3-3x^2-18x)
f(8)=9, so (8,9) is a point
9=a(x^3-3x^2-18x)
9=a(512-192-144)
9=176a
a=(9/176)
(9/176)(x^3-3x^2-18x)

{{{graph(300,200,-10,10,-10,10,(9/158)(x^3-3x^2-18x))}}}
=======================
Complex roots are conjugate.
2 complex roots, so 4 altogether there.
2 bounces, so that is 4 more at least.
1 crossing.
degree 9 minimal.