Question 155130
<p>It can be any number you want.</p><p>The solution arises from the fact that anything times zero is just zero and also adding zero to something doesn't change it.</p><p>Now granted the formula will get a bit lengthy but it is a valid solution and it can be any number you want.</p><p>Lets start with a simple sequence of three random numbers between (1-10) from random.org I got 6,9,2,_ whats next, Ok back to random.org its came up with 5.</p><p>So our problem is to come up with a formula f(n) that produces f(1)=6, f(2)=9, f(3)=2, and f(4)=5</p><p>
f(1)=6
f(2)=9
f(3)=2
f(4)=5</p><p>Lets initially choose</p><p>f(n) = 6</p><p>f(1) = 6 check
f(2) = 6 fail</p><p>so lets refine it</p><p>f(n) = 6 + (n-1)(3/1)</p><p>f(1) = 6 check
f(2) = 9 check
f(3) = 12 fail</p><p>so we refine further</p><p>f(n) = 6 + (n-1)(3/1) + (n-1)(n-2)(-10/2)</p><p>f(1) = 6 check
f(2) = 9 check
f(3) = 2 check
f(4) = -15 fail</p><p>so we refine further</p><p>f(n) = 6 + (n-1)(3/1) + (n-1)(n-2)(-10/2) + (n-1)(n-2)(n-3)(10/3)</p><p>f(1) = 6 check
f(2) = 9 check
f(3) = 2 check
f(4) = 5 check</p><p>{{{ f(n) = 6 +( (n-1)3)/1  + ((n-1)(n-2)(-10))/2 + ((n-1)(n-2)(n-3)10)/3 }}}</p><p>So to answer the original question using the same methods the formula looks like this...</p><p>{{{ f(n)=9+(n-1)*64/1!+(n-1)*(n-2)*104/2!+(n-1)*(n-2)*(n-3)*48/3!+(n-1)*(n-2)*(n-3)*(n-4)*(0)/4!+(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*0/5!+(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(-2913)/6! }}}</p><p>f(7) = 0</p><p>simplified...</p><p>{{{ f(n)=9+(n-1)*64/1!+(n-1)*(n-2)*104/2!+(n-1)*(n-2)*(n-3)*48/3!+(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(-2913)/6! }}}</p>