Question 993278
FIND THE DOMAIN:

{{{R(X)= (3+2x)/(x^3+x^2-2x)}}}
.
The domain is limited to prevent division by zero:
{{{x^3+x^2-2x}}}≠0
{{{(x)(x^2+x-2)}}}≠0
{{{(x)(x+2)(x-1)}}}≠0
x≠0 and x+2≠0 and x-1≠0
x≠0 and x≠-2 and x≠1
The domain is all x not equal to 0,-2, or 1.
.
{{{C(X)= (x+3)/(x^2-4)}}}
.
The domain is limited to prevent division by zero:≠0
{{{(x^2-4)}}}≠0
{{{(x-2)(x+2)}}}≠0
x-2≠0 and x+2≠0
x≠2 and x≠-2
The domain is all x not equal to 2 or -2.
.
SIMPLIFY: 
The use of parenthesis would help.
I am guessing at some of these equations.
.
{{{(7x+35)/(x^2+5x)=((7)(x+5))/((x)(x+5))}}}={{{7/x}}}
.
{{{(x^2+7x)/(x^2+5x-14)=((x)(x+7))/((x-2)(x+7))}}}={{{x/(x-2)}}}
.
{{{8x/(2*x^5*4x^2)=((2x)(4))/ ((2x)(x^4+2x))}}}={{{4/(x^4+2x)}}}