Question 992887
.
Please explain how to solve using implicit differentiation.


{{{ e^(xy)=4x+4y+20 }}}
-------------------------------------------------------------


Take the differential of both sides.  Use the rule of taking the differential of a composite function and taking the differential of a product:


{{{d(e^xy)}}} = {{{4*dx + 4*dy}}},


{{{(dx*y + x*dy)*(e^xy)}}} = {{{4*dx + 4*dy}}}.


Next,  express  dy  via  dx  in the form   dy = g*dy,   where  g  is a function of  x  and  y.


Then   {{{dy/dx}}} = {{{g(x,y)}}}.