Question 992725
.
1) Find the equation of the line through the given pair of points in standard form using only integers: (5,1) (-2,7) 
2) Use the square root property to find all real or imaginary solutions to the equation: (p-3) exponent 2 = 13 
3) Solve the equation by factoring: (X+3) (X-2)= -4 
-------------------------------------------------------------------------


2)  {{{(p-3)^2}}} = {{{13}}},     ---> take square root from both sides --->


      {{{p - 3}}} = +/- {{{sqrt(13)}}}, --->


      {{{p}}} = {{{3}}} +/- {{{sqrt(13)}}}.


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<U>Answer</U>. &nbsp;{{{p}}} = {{{3}}} +/- {{{sqrt(13)}}}.


=========================================================================


3) &nbsp;Solve the equation by factoring: (x+3) (x-2)= -4. 


First open parentheses:


{{{x^2 + 3x - 2x - 6}}} = {{{-4}}}.


Simplify, &nbsp;collect common terms:


{{{x^2 + x - 2}}} = {{{0}}}.


Now factor left side:


{{{x^2 + x - 2}}} = (x-1)*(x+2).


Next, solve this equation:


(x-1)*(x+2) = 0.


The solutions are &nbsp;x = 1 &nbsp;and &nbsp;x = -2.


Check yourself these solutions by substituting them into the original equation.


<U>Answer</U>. &nbsp;x = 1 &nbsp;and &nbsp;x = -2.