Question 991939

log2 (2x-1)=log4 (3x^2-4x+2)
<pre>{{{log (2, (2x - 1)) = log (4, (3x^2 - 4x + 2))}}}
{{{log (2, (2x - 1)) = (log ((3x^2 - 4x + 2)))/log 4}}} ----- Changing base on right side to base 10
{{{log (2, (2x - 1)) = log (2, (3x^2 - 4x + 2))/log (2, 4)}}} ------- Changing base on right side to base 2
{{{log (2, (2x - 1)) = log (2, (3x^2 - 4x + 2))/2}}}
{{{2 * log (2, (2x - 1)) = log (2, (3x^2 - 4x + 2))}}} ----- Cross-multiplying
{{{log (2, (2x - 1)^2) = log (2, (3x^2 - 4x + 2))}}}
{{{(2x - 1)^2 = 3x^2 - 4x + 2}}}
{{{4x^2 - 4x + 1 = 3x^2 - 4x + 2}}}
{{{4x^2 - 3x^2 - 4x + 4x + 1 - 2 = 0}}}
{{{x^2 - 1 = 0}}}
(x - 1)(x + 1) = 0
{{{highlight_green(x = 1)}}}		OR           x  = - 1 (ignore)