Question 989453

8bē = 3 - 10b 

8bē + 10b - 3 = 0


You can use the quadratic formula and replace the values for a = 8, b = 10 and c = -3

{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}} 


{{{x = (-10 +- sqrt( 10^2-4*8*(-3) ))/(2*8) }}} 


{{{x = (-10 +- sqrt(196))/(16) }}} 


Solving for x1:

{{{x = (-10 + sqrt(196))/(16) = 1/4}}} 



Solving for x2:

{{{x = (-10 - sqrt(196))/(16) = -(3/2)}}} 



OR you can solve the shorter way as follows:


8bē + 10b - 3 = 0 ---> (2b + 3)(4b - 1) = 0


{{{2b + 3 = 0}}} --> {{{2b = -3}}}


{{{2b/2 = -3/2}}} --> {{{b = -3/2}}}



{{{4b - 1 = 0}}} --> {{{4b = 1}}}


{{{4b/4 = 1/4}}} --> {{{b = 1/4}}}



Cheers!
Farohw