Question 987054
{{{ 5*( y-5 ) = 7*( 2y +1 ) }}}
The goal is to get the terms involving {{{ y }}}
on one side of the equation
-------------------------
You can use the distributive property like this:
{{{ 5y - 25 = 14y + 7 }}}
---------------------
Subtrace {{{ 5y }}} from both sides
{{{ -25 = 14y - 5y + 7 }}}
{{{ -25 = 9y + 7 }}}
-----------------------
Subtract {{{ 7 }}} from both sides
{{{ -32 = 9y }}}
----------------
Now divide both sides by {{{ 9 }}}
{{{ y = -32/9 }}}
------------------
check the solution:
{{{ 5*( y-5 ) = 7*( 2y +1 ) }}}
{{{ 5*( (-32/9 ) - 5 ) = 7*( 2*( -32/9 ) +1 ) }}}
{{{ 5*( -32/9 - 45/9 ) = 7*( -64/9 + 9/9 ) }}}
{{{ 5*( -77/9 ) = 7*( - 55/9 ) }}}
Multiply both sides by {{{ 9 }}}
{{{ 5*( -77 ) = 7*( -55 ) }}}
{{{ -385 = -385 }}}
-----------------------
The check works -it's OK if you only
follow the solution and not the check-
just keep working at it