Question 986853
Find a_5 for the following geometric sequence: a_2=4096, r=1/4?

Thank you.
Formula for a term in a geometric sequence: {{{a[n] = a[1]r^(n - 1)}}}
We then get: {{{a[2] = a[1] * (1/4)^(2 - 1)}}}
{{{4096 = a[1] * (1/4)}}}
{{{a[1] = 4096/(1/4)}}}
{{{a[1] = 4096 * 4)}}}
{{{a[1] = 16384}}}


{{{a[n] = a[1]r^(n - 1)}}}
We then get: {{{a[5] = 16384 * (1/4)^(5 - 1)}}}
{{{a[5] = 16384 * (1/4)^4}}}
{{{a[5] = 16384 * (1/4^4)}}}
{{{a[5] = 16384 * (1/256)}}}
{{{a[5] = 64cross(16384) * (1/cross(256))}}}
{{{highlight_green(a[5] = 64)}}}