Question 985720
.
<TABLE>
  <TR>
  <TD>
{{{S}}} = {{{(1/2)*d[1]*d[2]*sin(delta)}}}


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The area of a parallelogram equals half the product of the measures of its&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;diagonals {{{d[1]}}} &nbsp;and&nbsp; {{{d[2]}}}&nbsp; and the sines of the angle between them. 

 </TD>
  <TD>
{{{drawing( 200, 100,  -0.5, 7.5, -0.5, 3.5, 
            line( 0.0,  0.0, 5.0,  0.0), 
            line( 0.0,  0.0, 2.0,  3.0),
            line( 2.0,  3.0, 7.0,  3.0),
            line( 5.0,  0.0, 7.0,  3.0),

            locate( -0.1,  0.0, A),
            locate(  4.9,  0.0, B),
            locate(  7.0,  3.6, C),
            locate(  1.8,  3.6, D),

            line( 0.0,  0.0, 7.0,  3.0), 
            line( 2.0,  3.0, 5.0,  0.0), 

            locate(  2.05, 1.7, d1),
            locate(  3.00, 2.6, d2),

       blue(arc ( 3.5, 1.5, 1.2, 1.2, 330, 38)),
            locate( 4.3, 1.7, delta)
)}}}
 </TD>
 </TR>
</TABLE>

See the lesson &nbsp;<A HREF=http://www.algebra.com/algebra/homework/Surface-area/Area-of-a-parallelogram.lesson>Area of a parallelogram</A>&nbsp; in this site.


So, &nbsp;in our case &nbsp;&nbsp;{{{S}}} = {{{1/2}}}*6*8*sin(55°) = 24*sin(55°).


Calculate it yourself, &nbsp;please.