Question 985541
<font face="Times New Roman" size="+2">


The pieces of a compound interest problem are the future value, *[tex \Large A], the present value, *[tex \Large P], the interest rate expressed as a decimal, *[tex \Large r], the number of compounding periods per year, *[tex \Large n], and the number of years, *[tex \Large t]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ A\ =\ P\left(1\ +\ \frac{r}{n}\right)^^{nt}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ P\ =\ \frac{A}{\left(1\ +\ \frac{r}{n}\right)^^{nt}}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ t\ =\ \frac{\ln\left(\frac{A}{P}\right)}{n\ln\left(1\ +\ \frac{r}{n}\right)}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ r\ =\ n\left\[e^{\frac{\ln\left(\frac{A}{P}\right)}{nt}}\ -\ 1\right\]]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it

*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \