Question 984759
Look for how you can deduce the pattern. 
Start with {{{n=2}}}
{{{g(x)og(x)=(x^2)^2=x^4}}}
.
.
.
{{{n=3}}}
{{{g(x)og(x)og(x)=(x^2)^4=x^8}}}
.
.
.
{{{n=4}}}
{{{g(x)og(x)og(x)og(x)=(x^2)^8=x^16}}}
So the exponent is increasing as {{{2^n}}}
So for {{{n}}} copies,
{{{G[n](x)=x^(2^n)}}}
where 
G[n]=g(x) o g(x) o g(x) ... g(x) <--- n times