Question 984327

--------------------------------------------------------------------
1. A chord of length  24 cm  is  13 cm  from the center of the circle. 
      Calculate the radius of the circle.
--------------------------------------------------------------------


What you are given is in the <B>Figure 1</B>.<TABLE>
  <TR>
  <TD>

{{{drawing( 200, 200,  -5.5, 5.5, -5.5, 5.5, 
            line( -5.5,  0.0, 5.5, 0.0),
            circle( 0.0, 0.0, 5), 
            circle( 0.0, 0.0, 0.2), 

        red(line (-4.0, -3.0, 4.0, -3.0)),

            locate(-0.6, 0.0, O),

            line ( 0.0, 0.0,  4.0, -3.0),
            line ( 0.0, 0.0, -4.0, -3.0),

            locate( 0.2, -1.2, 13),
            locate(-1.8, -3.0, 12),
            locate( 1.2, -3.0, 12),

            line ( 0.0, 5.0,  0.0, -3.0)

)}}}

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<B>Figure 3</B>.
 </TD>
 </TR>
</TABLE>

Find the radius &nbsp;<B>r</B>&nbsp; as the hypotenuse of the right-angled triangle with the legs &nbsp;12 cm&nbsp; and &nbsp;13 cm:


{{{r}}} = {{{sqrt(12^2 + 13^2)}}} = {{{sqrt(144 + 169)}}} = {{{sqrt(313)}}} = {{{17.692}}} (approximately).