Question 984314
LCM OF {{{12p^2-12}}} , {{{8p^4-8}}} , {{{6p^2+6}}}:

{{{12(p^2-1)=2*2*3(p^2-1)}}}

{{{8p^4-8=8(p^4-1)=highlight(2*2*2)(p^2-1)(p^2+1)}}}

{{{6p^2+6=6(p^2+1)=2*highlight(3)(p^2+1)}}}

so, LCM is

{{{2*2*2*3(p^2-1)(p^2+1)}}}

{{{24(p^2-1)(p^2+1)}}}




the HCF OF 
{{{6x-24}}} , {{{x^2-6x+8}}} ,{{{ 9x^2-144}}}:

{{{6highlight((x-4))}}}

{{{x^2-6x+8=x^2-2x-4x+8=(x^2-2x)-(4x-8)=x(x-2)-4(x-2)=highlight((x-4))(x-2)}}}

{{{ 9x^2-144=9(x^2-16)=9(x^2-4^2)=9highlight((x-4))(x+4)}}}

so, your answer is:the HCF OF {{{6x-24}}} , {{{x^2-6x+8}}} ,{{{ 9x^2-144}}} is {{{highlight(x-4)}}}