Question 983667
Is this the problem:
{{{ 3/x + 5/( x+2 ) = 2 }}}
If so, multiply both sides by {{{ x*( x+2 ) }}}
{{{ 3*( x+2 ) + 5x = 2x*( x+2 ) }}}
{{{ 3x + 6 + 5x = 2x^2 + 4x }}}
{{{ 2x^2 + 4x - 3x - 5x - 6 = 0 }}}
{{{ 2x^2 - 4x - 6 = 0 }}}
Divide both sides by {{{ 2 }}}
{{{ x^2 - 2x - 3 = 0 }}}
By looking at this, I see the solution is:
{{{ ( x -3 )*( x + 1 ) = 0 }}}
{{{ x = 3 }}}
{{{ x = -1 }}}
--------------
Check solutions by plugging them back into
the original problem
{{{ 3/x + 5/( x+2 ) = 2 }}}
{{{ 3/3 + 5/( 3+2 ) = 2 }}}
{{{ 1 + 1 = 2 }}}
OK
{{{ 3/x + 5/( x+2 ) = 2 }}}
{{{ 3/-1 + 5/( -1+2 ) = 2 }}}
{{{ -3 + 5/1 = 2 }}}
{{{ -3 + 5 = 2 }}}
OK