Question 983430
{{{sqrt(24a^3b^6c)}}}.......firs, you can write sqrt of product as a product of square roots like this:

{{{sqrt(24)*sqrt(a^3)*sqrt(b^6)*sqrt(c)}}}

now you can write {{{sqrt(24)}}} as {{{sqrt(4*2*3)=sqrt(2^2)*sqrt(2)*sqrt(3)}}},
and {{{sqrt(a^3)=sqrt(a^2*a)}}}, 
and {{{sqrt(b^6)=sqrt(b^3)^2}}}

so, you have

{{{sqrt(2^2)*sqrt(2)*sqrt(3)*sqrt(a^2*a)*sqrt((b^3))^2*sqrt(c)}}}...now simplify

{{{2*sqrt(2)*sqrt(3)*a*sqrt(a)*b^3*sqrt(c)}}}

{{{2ab^3*sqrt(2)*sqrt(3)*sqrt(a)*sqrt(c)}}}

{{{2ab^3*sqrt(2*3*a*c)}}}

{{{2ab^3*sqrt(6ac)}}}