Question 983323


{{{1/2-(sqrt(3)/2)*i}}} = cos(-60) + i*sin(-60) = cos(300) + i*sin(300)       (the angles are in degrees).


Three complex cubic roots of this number are


1.  cos(100) + i*sin(100)       (100 = {{{300/3}}}).


2.  cos(100+120) + i*sin(100+120) = cos(220) + i*sin(220)        (120 = {{{360/3}}})


3.  cos(100 + 240) + i*sin(100+240) = cos(340) + i*sin(340)


See my lessons on complex numbers in this site &nbsp;<A HREF=http://www.algebra.com/algebra/homework/complex/Review-of-lessons-on-complex-numbers.lesson>REVIEW of lessons on complex numbers</A>&nbsp; and especially the lesson &nbsp;<A HREF=http://www.algebra.com/algebra/homework/complex/How-to-take-a-root-of-a-complex-number.lesson>How to take a root of a complex number</A>.