Question 983092
Multiple application of the chain rule.
{{{dh/dx=(dh/dv)(dv/du)(du/dx)}}}
.
.
{{{h=ln(v)}}}
{{{dh/dv=1/v}}}
.
.
{{{v=cos(u)}}}
{{{dv/du=-sin(u)}}}
.
.
{{{u=x^2}}}
{{{du/dx=2x}}}
So then,
{{{dh/dx=(1/cos(x^2))*(-sin(x^2)*2x)}}}
{{{dh/dx=-2x*tan(x^2)}}}