Question 982566
<pre>
{{{(7*(cos(pi/3)^""+i*sin(pi/3)))/(sqrt(3)(cos(pi/6)^"" +i*sin(pi/6)))}}}

To divide two complex numbers in polar form you divide the numbers 
out front (the absolute values) and subtract the angles.
 
So divide the {{{7}}} by {{{sqrt(3)}}} and subtract {{{pi/3-pi/6}}}

{{{expr(7/sqrt(3))*(cos(pi/3-pi/6)^""+i*sin(pi/3-pi/6))}}}

Rationalize the denominator and simplify {{{pi/3-pi/6=2pi/6-pi/6=pi/6}}}

{{{expr(7sqrt(3)/3)*(cos(pi/6)^""+i*sin(pi/6))}}}

If you want that out of trig form, then replace the cosine and sine by
their values

{{{expr(7sqrt(3)/3)*(sqrt(3)/2+i*expr(1/2)))}}}
 
{{{expr(7sqrt(3)/3)*expr(sqrt(3)/2)+ expr(7sqrt(3)/3)*i*expr(1/2)}}}

{{{7*3/6+expr(7sqrt(3)/6)i}}}

{{{7/2+expr(7sqrt(3)/6)i}}}

Edwin</pre>