Question 982384
a cubic polynomial equation with roots {{{x[1]=-2}}}, {{{x[2]=2}}}, and{{{x[3]= 4}}}:

{{{f(x)=(x-x[1])(x-x[2])(x-x[3])}}}

{{{f(x)=(x-(-2))(x-2)(x-4)}}}

{{{f(x)=(x+2)(x-2)(x-4)}}}

{{{f(x)=(x^2-4)(x-4)}}}

{{{f(x)=x^3-4x^2-4x+16}}}


{{{ graph( 600, 600, -10, 10, -10, 20, x^3-4x^2-4x+16) }}}

so, your answer is  D. {{{x^3-4x^2 -4x + 16 = 0}}}