Question 981629

find {{{y = t^2 + 5}}}, {{{-4<= t <= 4}}}

if {{{t=-4}}}, then {{{y = t^2 + 5}}}=>{{{y = (-4)^2 + 5}}}=>{{{y = 16 + 5}}}=>{{{y = 21}}}

if {{{t=-3}}}, then {{{y = t^2 + 5}}}=>{{{y = (-3)^2 + 5}}}=>{{{y = 9 + 5}}}=>{{{y = 14}}}

if {{{t=-2}}}, then {{{y = t^2 + 5}}}=>{{{y = (-2)^2 + 5}}}=>{{{y = 4 + 5}}}=>{{{y = 9}}}

if {{{t=-1}}}, then {{{y = t^2 + 5}}}=>{{{y = (-1)^2 + 5}}}=>{{{y = 1 + 5}}}=>{{{y = 6}}}

if {{{t=0}}}, then {{{y = t^2 + 5}}}=>{{{y = (0)^2 + 5}}}=>{{{y = 0+ 5}}}=>{{{y = 5}}}

if {{{t=1}}}, then {{{y = t^2 + 5}}}=>{{{y = (1)^2 + 5}}}=>{{{y = 1 + 5}}}=>{{{y = 6}}}

if {{{t=2}}}, then {{{y = t^2 + 5}}}=>{{{y = (2)^2 + 5}}}=>{{{y = 4 + 5}}}=>{{{y = 9}}}

if {{{t=3}}}, then {{{y = t^2 + 5}}}=>{{{y = (3)^2 + 5}}}=>{{{y = 9 + 5}}}=>{{{y = 14}}}

if {{{t=4}}}, then {{{y = t^2 + 5}}}=>{{{y = (4)^2 + 5}}}=>{{{y = 16 + 5}}}=>{{{y = 21}}}