Question 980385
find the derivative of f.
{{{df/dx=(x^2*(1/x)-ln(x)*2x)/x^4}}}
{{{df/dx=(x-2xln(x))/x^4}}}
{{{df/dx=(1-2ln(x))/x^3}}}
The absolute maximum in the interval is the absolute maximum and occurs when
{{{1-2ln(x)=0}}}
{{{1=2ln(x)}}}
{{{ln(x)=1/2}}}
{{{x=e^(1/2)}}}
when
{{{y=ln(e^(1/2))/e}}}
{{{y=1/(2e)}}}
and the absolute minimum in the interval occurs at {{{x=1}}}
when
{{{y=ln(1)/1^2}}}
{{{y=0}}}
.
.
.
*[illustration fd2.jpg]