Question 979889


Resultant is the sum of given vectors,  correct? 

The sum of vectors is the diagonal of a parallelogram built on these vectors. &nbsp;Do you know it? &nbsp;See the &nbsp;<B>Figure</B>&nbsp; below.

<Table>
  <TR>
  <TD>
&nbsp;&nbsp;&nbsp;&nbsp;{{{drawing( 242, 200, -6.0, 6.1, -4.0, 5.0,
            line(-5.0, -3.0, -2.0, 1.0),
            locate (-5.2,  -3.0, A), 
            locate (-2.4,   1.7, B),
            line( -2.0, 1.0, -2.5, 0.7),
            line( -2.0, 1.0, -2.1, 0.5),


            line(-2.0, 1.0, 4.0, 2.0),
            locate (4.1,   2.5, C), 


        red(line(-5.0, -3.0, 4.0, 2.0)),
            line( 4.0, 2.0,  3.5, 1.57), 
            line( 4.0, 2.0,  3.3, 1.80), 

            line(-5.0, -3.0, 1.0, -2.0),
            locate (1.1,  -1.9, D),
            line( 1.0, -2.0,  0.5, -1.85),
            line( 1.0, -2.0,  0.5, -2.25),

            line(1.0, -2.0, 4.0, 2.0)
)}}}

&nbsp;&nbsp;<B>Figure</B>. &nbsp;The sum of the vectors&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<B>AB</B> + <B>AD</B> = <B>AC</B> &nbsp;(the &nbsp;<B>parallelogram rule</B>)
  </TD>
  </TR>
</Table> 

So, &nbsp;we are given the vectors &nbsp;<B>AB</B>&nbsp; and &nbsp;<B>AD</B>&nbsp; of the length &nbsp;3&nbsp; and &nbsp;4&nbsp; and the angle &nbsp;<I>L</I><B>A</B> = 80°&nbsp; between them. 


The magnitude of the resultant is the length of the vector of sum, &nbsp;which is the vector &nbsp;<B>AC</B>.


Apply the &nbsp;<B>Law of Cosines</B>&nbsp; (see the lesson &nbsp;<A HREF=http://www.algebra.com/algebra/homework/Trigonometry-basics/Proof-of-the-Law-of-Cosines-revisited.lesson>Proof of the Law of Cosines revisited</A>&nbsp; in this site)&nbsp; to the triangle &nbsp;{{{DELTA}}}</B>ADC</B>&nbsp; to find the measure of its side &nbsp;<B>AC</B>.


{{{abs(AC)^2}}} = {{{abs(AD)^2}}} + {{{abs(DC)^2}}} - {{{2*abs(AD)*abs(DC)*cos(D)}}} = 3^2 + 4^2 - 2*3*4*cos(100°) = 9 + 16 - 24*(-0.17365) = 29.16752.


Hence, &nbsp;|<B>AC</B>| = {{{sqrt(29.16752)}}} = 5.40. 


<B>Answer</B>. &nbsp;The magnitude of the resultant is &nbsp;5.40.