Question 979485
{{{ log( 6, 6x ) }}}
I can say:
{{{ y = log( 6, 6x ) }}}
The inverse of this is:
{{{ 6^y = 6x }}}
This is equivilant to:
{{{ 6*6^( y-1 ) = 6x }}}
Divide both sides by {{{ 6 }}}
{{{ 6^( y-1 ) = x }}}
The inverse is:
{{{ y - 1 = log( 6, x ) }}}
{{{ y = log( 6,x ) + 1 }}}
--------------------------
check:
Suppose {{{ x = 6^10 }}}
{{{ y = log( 6, (6x) ) }}}
{{{ y = log( 6, (6*6^10) ) }}}
{{{ y = log( 6, (6^11) ) }}}
{{{ y = 11 }}}
and
{{{ y = log( 6,x ) + 1 }}}
{{{ y = log( 6,(6^10) ) + 1 }}}
{{{ y = 10 + 1 }}}
{{{ y = 11 }}}
OK