Question 978340
<font face="Times New Roman" size="+2">


If the graph of


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \rho(x)\ =\ ax^2\ +\ bx\ +\ c]


contains the point *[tex \Large (1,-1)], then


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ a(1)^2\ +\ b(1)\ +\ c\ =\ -1]


Likewise, for the other two points


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ a(-3)^2\ +\ b(-3)\ +\ c\ =\ -33]


and


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ a(2)^2\ +\ b(2)\ +\ c\ =\ -8]


So solve the 3X3 system


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ a\ +\ b\ +\ c\ =\ -1]
*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 9a\ -\ 3b\ +\ c\ =\ -33]
*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 4a\ +\ 2b\ +\ c\ =\ -8]


to determine the coefficients for the desired function. 


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it

*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \