Question 977135
{{{(sinA+1-cosA)/(cosA-1+sinA)}}}
= {{{(sinA+(1-cosA))/(sinA-(1-cosA))}}}
={{{((sinA+(1-cosA))*(sinA+(1-cosA)))/((sinA-(1-cosA))*(sinA+(1-cosA)))}}} (Just like rationalizing the denominator)

={{{(sin^2(A)+1+cos^2(A)+2*sinA-2*cosA -2*sinA*cosA)/(sin^2(A)-1-cos^2(A)+2cosA)}}}
={{{2(1+sinA-cosA-sinA*cosA)/(2*cosA-2cos^2(A))}}} (using sin^2(A)-1 = -cos^2(A))
={{{2*(1+sinA)*(1-cosA)/(2*cosA*(1-cosA))}}}
={{{(1+sinA)/cosA}}}